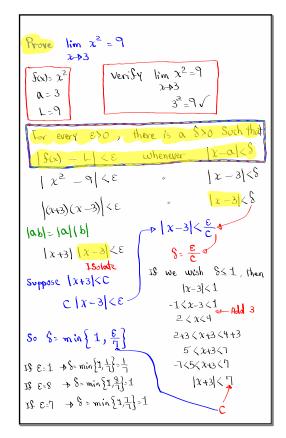


Feb 19-8:47 AM



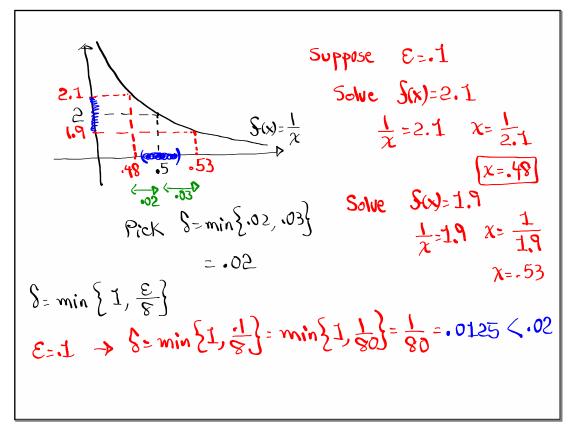
Feb 20-9:49 AM

 $\lim_{x \to +2x \to +3} (x^2 + 2x - 4) = 11$ Prove **λ-⊳**3 Veri\$y lim(x²+2x-4)=11√ $F(x) = x^2 + 2x - 4$ 2-23 32+2(3)-4=9+6-4=11 for every E>O, there is a S>O Such that \x-**α**|<δ 32 **]**- (x) whenever \x -3|<\$ whenever 3> 11 - 4-x2+2x $|\chi - 3| < \delta$ $|\chi^2 + 2\chi - 15| < \epsilon$ $\Rightarrow |x-3| \leq \frac{\varepsilon}{C}$ (x+5)(x-3) <E $S = \frac{\varepsilon}{c}$ $|\chi_{+5}||\chi_{-3}|<\varepsilon$ IS we wish SSI, then Bound Isolate Suppose 12+51<C |x-3| < 1 $-1 < \chi - 3 < 1$ $c|x-3|<\varepsilon$ Had 8 -1+8<x-3+8<1+8 $S = min \left\{ I, \frac{\varepsilon}{2} \right\}$ 76 x+5 <9 -952+559 IS E=1 -> S= 1 1×+5/<9 If E=5 → S= 5 IF E= B -> S= min {1, 15}=min {1,3=1

Feb 21-8:55 AM

 $\lim_{x \to \frac{1}{2}} \frac{1}{x} = 2$ Prove verify lim $\frac{1}{\gamma} = 2$ $F(x) = \frac{1}{2}$ =2V a=1/2 Nota. Polynomial Sunction 1=2 For ESO, there is a S>O Such that $|f(x) - L| < \varepsilon$ whenever $|x-a| < \delta$ $|x - \frac{1}{2}| < 8$ $\left|\frac{1}{x}-2\right|<\varepsilon$ " Some algebra $\left|\frac{1}{\chi}-2\right|=\left|\frac{2}{\chi}\left(\frac{1}{2}-\chi\right)\right|=\left|\frac{2}{\chi}\left(\chi-\frac{1}{2}\right)\right|=\left|\frac{2}{\chi}\left(\chi-\frac{1}{2}\right)\right|=\left|\frac{2}{\chi}\left(\chi-\frac{1}{2}\right)\right|$ Is $\frac{2}{|x_1|} \langle C$, then $C|x-\frac{1}{2}| \langle \varepsilon$, $|x-\frac{1}{2}| \langle \varepsilon \rangle$ 15 we let \$ 51 y=5(x)=1/2 $\frac{1}{2} - 1 = -\frac{1}{2}$ but $\chi \neq 0$ what about $S \leq \frac{1}{2}$ $\frac{1}{2} - \frac{1}{2} = 0$ but $\chi \neq 0$ wish (S < is we $|x - \frac{1}{2}| < \frac{1}{4}$ $\langle \chi \langle \frac{3}{4} \rangle$ 0 $4 \left(\frac{1}{2} \right) \frac{4}{3}$ $\chi - \frac{1}{2} < \frac{1}{4}$ 8>=>> $\chi < \frac{1}{4} + \frac{1}{2}$ $|\chi|$ So S= min } ≒ 1\$ c=1 → S= ½ 1\$ ε=.1 → S= 1/80

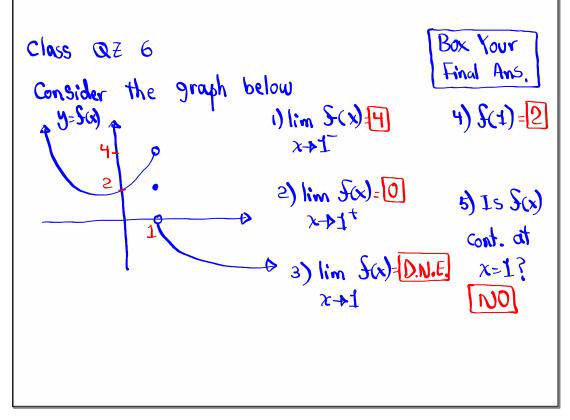
Feb 21-9:08 AM



Feb 21-9:29 AM

Prove $\lim_{\chi \to \frac{1}{2}} \frac{1}{\chi} = 2$ Verify $\lim_{\chi \to 1^{-1}} \frac{1}{\chi} = 2$ $F(x) = \frac{1}{x} R$ L=2 Polynomial Sunction For $\varepsilon > 0$, there is a $\varepsilon > 0$ Such that $|S(x) - L| < \varepsilon$ whenever $|x - a| < \delta$ $|\frac{1}{x} - 2| < \varepsilon$ $|x - \frac{1}{2}| < \delta$ $|\frac{1 - 2x}{x}| < \varepsilon$ $\delta = \frac{\varepsilon}{c}$ $\begin{vmatrix} \frac{-2x + 1}{x} \\ \frac{-2(x - \frac{1}{2})}{x} \end{vmatrix} < \varepsilon \qquad \text{See earlier Work}$ $\begin{vmatrix} \frac{-2(x - \frac{1}{2})}{x} \\ \frac{-2(x - \frac{1}{2})}{x} \end{vmatrix} < \varepsilon \qquad \text{Semin} \left\{ \frac{1}{4}, \frac{\varepsilon}{8} \right\}$ $\frac{|-2| | x - \frac{1}{2}|}{|x|} < \varepsilon$ $\frac{\frac{2}{|x|}}{\frac{1}{|x|}} \frac{|x - \frac{1}{2}| < \varepsilon}{|x - \frac{1}{2}| < \frac{\varepsilon}{\varepsilon}}$ IS $\frac{2}{|x|} < C$, then $|x - \frac{1}{2}| < \frac{\varepsilon}{\varepsilon}$ Google Squeeze thrm

Feb 21-9:08 AM



Feb 21-9:45 AM